Jump to content

Perception: Difference between revisions

m
(Connecting established to Information processing)
Line 10: Line 10:


=== Visual Perception ===
=== Visual Perception ===
Visual perception can be understood as a diverse process that begins with the transformation of light stimuli into meaningful cognitive interpretations involving retinal sensing through photoreceptors and cortical processing in multiple brain areas.<ref name=":0">Donato, R., Pavan, A., & Campana, G. (2020). Investigating the Interaction Between Form and Motion Processing: A Review of Basic Research and Clinical Evidence. ''Frontiers in Psychology'', ''11''. <nowiki>https://doi.org/10.3389/fpsyg.2020.566848</nowiki></ref> The photoreceptors receive light signals through the retina, converting them into electrical signals. Those signals are then transmitted along the optic nerve in the eye, in order to reach the lateral geniculate nucleus before arriving at the striate cortex. This cortex, known as the visual cortex serves on fundamental basis for the conscious perception of static form and local brightness differences, establishing the base for more complex visual processing.<ref>Pollen, D. A. (1999). On the Neural Correlates of Visual Perception. ''Cerebral Cortex'', ''9''(1), 4–19. <nowiki>https://doi.org/10.1093/cercor/9.1.4</nowiki></ref> Following that, after leaving the visual cortex, signals travel along the dorsal stream to the parietal cortex, serving for spatial orientation and motor actions such as reaching or eye movements. Further, focusing on forms, colours and object identity, signals must flow through the ventral stream into the inferior temporal cortex.<ref name=":0" /> For perceptual experience to arise, the visual cortex engages in recursive feedback loops with higher brain regions, for instance temporal and parietal. Those feedbacks enter into loops between each other to continuously compare new sensory data with prior knowledge or expectations, leading to our visual recognition of the outer world.<ref name=":0" /> Along with Descartes analytical approach, raw light signals are simplified into features such as edges and movements by the visual cortex, then recombined under guidance of attention and memory. This creates a synergy between modern neuroscience and analysing complex phenomena into smaller elements.IF
Visual perception can be understood as a diverse process that begins with the transformation of light stimuli into meaningful cognitive interpretations involving retinal sensing through photoreceptors and cortical processing in multiple brain areas.<ref name=":0">Donato, R., Pavan, A., & Campana, G. (2020). Investigating the Interaction Between Form and Motion Processing: A Review of Basic Research and Clinical Evidence. ''Frontiers in Psychology'', ''11''. <nowiki>https://doi.org/10.3389/fpsyg.2020.566848</nowiki></ref> The photoreceptors receive light signals through the retina, converting them into electrical signals. Those signals are then transmitted along the optic nerve in the eye, in order to reach the lateral geniculate nucleus before arriving at the striate cortex. This cortex, known as the visual cortex serves on fundamental basis for the conscious perception of static form and local brightness differences, establishing the base for more complex visual processing.<ref>Pollen, D. A. (1999). On the Neural Correlates of Visual Perception. ''Cerebral Cortex'', ''9''(1), 4–19. <nowiki>https://doi.org/10.1093/cercor/9.1.4</nowiki></ref> Following that, after leaving the visual cortex, signals travel along the dorsal stream to the parietal cortex, serving for spatial orientation and motor actions such as reaching or eye movements. Further, focusing on forms, colours and object identity, signals must flow through the ventral stream into the inferior temporal cortex.<ref name=":0" /> For perceptual experience to arise, the visual cortex engages in recursive feedback loops with higher brain regions, for instance temporal and parietal. Those feedbacks enter into loops between each other to continuously compare new sensory data with prior knowledge or expectations, leading to our visual recognition of the outer world.<ref name=":0" /> Along with Descartes analytical approach, raw light signals are simplified into features such as edges and movements by the visual cortex, then recombined under guidance of attention and memory. This creates a synergy between modern neuroscience and analysing complex phenomena into smaller elements.  


Moreover, visual perception involves actively searching for relevant stimuli, influenced by external factors such as color salience and movement, as well as internal states in order to recognise objects. For instance, conspicuous features can capture human attention instantly, leading to unusual preferences when distractions occur. At this state, the ventral stream captures specific details from it. In addition, the temporal cortex stores those representations, helping humans to categorise and label familiar objects in fractions of a second.<ref name=":1">Jansson-Boyd, C. V., & Bright, P. (2024). Visual neuroscience. ''Elsevier EBooks'', 51–69. <nowiki>https://doi.org/10.1016/b978-0-443-13581-1.00004-2</nowiki></ref> Furthermore, visual search engages emotional and reward circuits, when identifying form and motion. The ventral tegmental area and nucleus accumbens interact with cortical regions to process rewarding stimuli, reinforcing behaviour patterns triggered by appealing elements. Likewise research shows, that emotional associations are carried firmly throughout visual perception, that bias us towards or against objects before consciously registering the object. This phenomenon, known as microvalence, refers to subconscious evaluation of an object's aversiveness during visual processing.<ref name=":1" />
Moreover, visual perception involves actively searching for relevant stimuli, influenced by external factors such as color salience and movement, as well as internal states in order to recognise objects. For instance, conspicuous features can capture human attention instantly, leading to unusual preferences when distractions occur. At this state, the ventral stream captures specific details from it. In addition, the temporal cortex stores those representations, helping humans to categorise and label familiar objects in fractions of a second.<ref name=":1">Jansson-Boyd, C. V., & Bright, P. (2024). Visual neuroscience. ''Elsevier EBooks'', 51–69. <nowiki>https://doi.org/10.1016/b978-0-443-13581-1.00004-2</nowiki></ref> Furthermore, visual search engages emotional and reward circuits, when identifying form and motion. The ventral tegmental area and nucleus accumbens interact with cortical regions to process rewarding stimuli, reinforcing behaviour patterns triggered by appealing elements. Likewise research shows, that emotional associations are carried firmly throughout visual perception, that bias us towards or against objects before consciously registering the object. This phenomenon, known as microvalence, refers to subconscious evaluation of an object's aversiveness during visual processing.<ref name=":1" />